11,198 research outputs found

    Reconstruction of cosmological initial conditions from galaxy redshift catalogues

    Full text link
    We present and test a new method for the reconstruction of cosmological initial conditions from a full-sky galaxy catalogue. This method, called ZTRACE, is based on a self-consistent solution of the growing mode of gravitational instabilities according to the Zel'dovich approximation and higher order in Lagrangian perturbation theory. Given the evolved redshift-space density field, smoothed on some scale, ZTRACE finds via an iterative procedure, an approximation to the initial density field for any given set of cosmological parameters; real-space densities and peculiar velocities are also reconstructed. The method is tested by applying it to N-body simulations of an Einstein-de Sitter and an open cold dark matter universe. It is shown that errors in the estimate of the density contrast dominate the noise of the reconstruction. As a consequence, the reconstruction of real space density and peculiar velocity fields using non-linear algorithms is little improved over those based on linear theory. The use of a mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian space, allows an unbiased (although noisy) reconstruction of initial conditions, as long as the (linearly extrapolated) density contrast does not exceed unity. The probability distribution function of the initial conditions is recovered to high precision, even for Gaussian smoothing scales of ~ 5 Mpc/h, except for the tail at delta >~ 1. This result is insensitive to the assumptions of the background cosmology.Comment: 19 pages, MN style, 12 figures included, revised version. MNRAS, in pres

    Globular Cluster Abundances and What They Can Tell Us About Galaxy Formation

    Get PDF
    We review the properties of globular clusters which make them useful for studying the Galactic halo, Galactic chemical evolution, and the early stages of the formation of the Milky Way. We review the evidence that GCs have a chemical inventory similar to those of halo field stars. We discuss the abundance ratios for dSph galaxies and show that it is possible to have formed at least part the Galactic halo field stellar population by dissolving globular clusters and/or accreting dSph galaxies but only if this occurred at an early stage in the formation of the Galaxy. We review the constraints on halo formation timescales deduced from the low Mg isotopic ratios in metal-poor halo field dwarfs which indicate that AGB stars did not have time to contribute significantly, while M71 contains two populations, one without and also one with a substantial AGB contribution. We review the limited evidence for GCs with a second population showing additional contributions from SNII, currently confined to Omega Cen, M54, and M22, all of which may have been the nuclei or central regions of accreted galaxies. We check our own data for additional such GCs, and find preliminary indications that NGC 2419, a massive GC far in the outer Galactic halo, may also belong to this group.Comment: Invited Talk: IAU Symp. 266, Star Clusters - Basic Building Blocks Throughout Time and Space, proceedings to be published by Cambridge University Pres

    Molecular dynamics simulation study of the high frequency sound waves in the fragile glass former ortho-terphenyl

    Full text link
    Using a realistic flexible molecule model of the fragile glass former orthoterphenyl, we calculate via molecular dynamics simulation the collective dynamic structure factor, recently measured in this system by Inelastic X-ray Scattering. The comparison of the simulated and measured dynamic structure factor, and the study of its properties in an extended momentum, frequency and temperature range allows: i) to conclude that the utilized molecular model gives rise to a dynamic structure factor in agreement with the experimental data, for those thermodynamic states and momentum values where the latter are available; ii) to confirm the existence of a slope discontinuity on the T-dependence of the sound velocity that, at finite Q, takes place at a temperature T_x higher than the calorimetric glass transition temperature T_g; iii) to find that the values of T_x is Q-dependent and that its vanishing Q limit is consistent with T_g. The latter finding is interpreted within the framework of the current description of the dynamics of supercooled liquids in terms of exploration of the potential energy landscape.Comment: RevTex, 9 pages, 10 eps figure

    Glass-specific behavior in the damping of acoustic-like vibrations

    Full text link
    High frequency sound is observed in lithium diborate glass, Li2_2O--2B2_2O3_3, using Brillouin scattering of light and x-rays. The sound attenuation exhibits a non-trivial dependence on the wavevector, with a remarkably rapid increase towards a Ioffe-Regel crossover as the frequency approaches the boson peak from below. An analysis of literature results reveals the near coincidence of the boson-peak frequency with a Ioffe-Regel limit for sound in {\em all} sufficiently strong glasses. We conjecture that this behavior, specific to glassy materials, must be quite universal among them.Comment: 4 pages, 4 figures, revised versio

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele

    The Local Galaxy Density and the Arm Class of Spiral Galaxies

    Full text link
    We have examined the effect of the environmental density on the arm classification of an extensive sample of spiral galaxies included in the Nearby Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm class of a galaxy on other factors, such as its blue absolute magnitude and its disk-to-total mass ratio, inferred in the literature either from the gradient of a good galaxy rotation curve or from a photometric mass decomposition method. We have found that the arm class is strongly related to the absolute magnitude in the mid-type spirals (in the sense that grand design galaxies are, on average, more luminous than flocculent objects), whilst this relation is considerably weaker in the early and late types. In general the influence of the local density on the arm structure appears to be much weaker than that of the absolute magnitude. The local density acts essentially in strengthening the arm class--absolute magnitude relation for the mid types, whereas no environmental density effects are observed in the early and late types. Using the most recent estimates of the disk-to-total mass ratio, we do not confirm this ratio to be a significant factor which affects the arm class; nevertheless, owing to poor statistics and large uncertanties, the issue remains open. Neither a local density effect nor an unambiguous bar effect on the disk-to-total mass ratio is detectable; the latter finding may challenge some theoretical viewpoints on the formation of bar structures.Comment: 15 pages, Latex, SISSA 102/93/A openbib.sty and 4 POSTSCRIPT figures appende

    Compressed correlation functions and fast aging dynamics in metallic glasses

    Full text link
    We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, thus faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent {\beta} larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a non diffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.Comment: 7 pages, 4 figures. To be published in J. Chem. Phy
    • …
    corecore